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1.0 I N T R O D U C T I O N  

Since it is not feasible to experimentally evaluate an aircraft turbine engine under all 
possible conditions, mathematical  models are built to simulate the operation of the major 
components of an engine such as the compressor, turbine and combustor which can be 
tested seperately and together. In this report we are concerned with the mathematical  and 
numerical models of compressors and turbines. The following specific topics are discussed: 

1. Numerical stability of a one-dimensional compressor model. 

2. Numerical stability of a multi-dimensional finite volume code that  simulates a 

turbine. 

3. Stage characteristics used in the compressor models. 

4. Multi-dimensional compressor model equations for the simulation of circumfer- 
entially distorted flows and their boundary conditions. 

Kimzey (Ref. t) developed a one-dimensional time-dependent model for the analysis 
of the effects of planar disturbances on a compressor on the basis of conservation laws of 
mass, momentum and energy. Experimental data are used to synthesize the stage charac- 
teristics of the compressor. The compressor stage force and shaft work which are needed 
in the model are calculated based on these characteristics. The conservation equations 
are discretized spatially by the use of a two-sided difference scheme. Boundary conditions 
are imposed on total pressure and total temperature at the inlet boundary and on static 
pressure or airflow' rate at the exit boundary. The resulting system of ordinary differential 
equations is integrated forward in time by a fourth-order Runge-Kutta scheme. 

These model's have been applied to a variety of compression systems by Kimzey (Ref. 
/) and Chamblee, Davis and Kimzey (Ref. 2). They are used to analyze and extrapolate 
the experimental data  and to study the effects of unsteady disturbances of the aerodynamic 
stability of the compression system. These models are not always numerically stable. Some 
of the techniques used for overcoming the numerical instabilities are to increase the friction 
coefficient in the inlet and exit. ducting, to alter the ducting lengths or areas and to time 
average the numerical solutions once every few time steps. However, these techniques can 
achieve only conditional numerical stability for some of the compression systems. Also the 
application of the models has been restricted to limited regions of the operating map, for 
which they are numerically stable. 

Davis (Ref. t) has applied MacCormack's explk:it Ihdtc difference scheme to ~olve the 
partial differential equations of the model and an approximate version of the method of 
characteristics to impose the boundary conditions. This scheme is more stable numerically 
than the earlier method, but this also exhibits numerical oscillations in the solutions under 
certain conditions. These oscillations are controlled or reduced by the addition of extra 
friction or dissipation in the inlet duct and by reducing the inlet duct volume. Ilowe~er. 
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the additional extra  friction may degrade the accuracy of the simulation of the actual 
physical system. Davis has applied the one-dimensional compressor model to simulate the 
dynamics of single spool and dual spool compression systems. The computer  code based 
on this scheme is called COMP2SP in this report for identification purposes. 

Reddy and Tsui (Ref. 3) have analyzed the compressor model equations and con- 
cluded that the boundary conditions should be imposed accurately based on the method 
of characteristics (M.O.C.). They have tested various numerical schemes together with 
the M.O.C. boundary conditions and concluded that MacCormack Scheme provided a re- 
liable and numerically stable method. They have not reported any numerical oscillations 
mentioned in Ref. 4. The one-dimensional compressor code based on this work is called 
COMPUT.  

One of the topics addressed in this report is the identification of the source of nu- 
merical oscillations in the one-dimensional two spool compressor model, C OMP2SP  and 
the changes that  have been made to remove the numerical oscillations and to enhance the 
accuracy of the model. This is essentially accomplished by detailed comparisons of the 
results of COMP2SP  and C O M P U T  for an identical test case, as reported in Section 2. 

The ARO-1 code is a three-dimensional, finite volume code for solving the unsteady 
Euler equations using an explicit MacCormack scheme. This code has been modified at 
AEDC to simulate a turbine by including source terms, such as the blade force and shaft 
work. The source terms are computed from the known performance characteristics of 
the turbine. This is called the ATAC code. Numerical oscillations were observed in the 
solutions of this code in and around the turbine. In order to analyze this problem, a turbine 
version of the COMPL'T code has been developed and it did not produce any numerical 
oscillations. From detailed comparisons it has been found that the source of oscillations 
in the ATAC code was the manner in which the source terms were incorporated into the 
algorithm. As reported in Section 3, appropriate changes have been made to the ATAC 
code which remove the spurious oscillations. Some transient flow results based on the 
one-dimensional turbine code have also been reported. 

The compressor model equations typically depend on various stage characteristics. 
These are obtained experimentally at great expense and can be done only for some dis- 
crete rotational speeds. Intermediate stage characteristics have to be obtained based on 
some interpolation techniques. [t is necessary to develop some rational models for vari- 
ous stage performance characteristics in order to interpolate for intermediate speeds. The 
compressor models developed at AEDC have traditionally used the stage characteristics 
based on curves representing the pressure coefficient. ¢'1, and temperature coef~cient, r'~'t 
as functions of the flow coefficient, ~b for various corrected speeds. Polynominah surface 
fits for interpolating the stage characteristics for intermediate corrected speeds have been 
found to be unsatisfactory. We report a s tudy of using alternate stage characteristics which 
may" be interpolated better  for intermediate speeds. [n Section 4. a calculation procedure 
based on the tota[ pressure loss coemcient: :~" and the deviation angle, 6 as functions of the 
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angle of incidence, i and corrected speed is outlined. Based on test results, stage charac- 
teristics based on ~ and 6 as functions of i are less sensitive to errors in interpolation for 
intermediate speeds than ~p and ~t vs &. 

Multi-dimensional compressor models are necessary for studying the effects of dis- 
tortion in the inlet flow and other non-uniformities in the flow field such as the rotating 
stall on the compressor operation. [n Section 5, unsteady two-dimensional compressor 
model ( z -  8 model) equations have been developed and analyzed. This is a radially 
averaged model suitable for circumferentially distorted flows. Characteristics and compat- 
ibility equations which can be used to impose the inflow and outflow boundary conditions 
accurately, have been developed. These equations are developed in a form suitable for 
developing a two-dimensional compressor code using similar numerical techniques as those 
used in one-dimensional codes. 
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2.0 O N E - D I M E N S I O N A L  C O M P R E S S O R  M O D E L  

As discussed in the last section, the one dimensional two spool compressor model, 
developed at AEDC, exhibited numerical oscillations under some conditions and was un- 
stable under some other conditions. For identification purposes we name the computer 
code for this model as COMP2SP in this report. We describe in this section the changes 
that  have been made to COMP2SP to remove the numerical oscillations and instability and 
to enhance the accuracy of the model. The source of numerical oscillations in COMP2SP 
was identified by comparing the results of this code with the results of a one-dimensional 
single spool compressor model developed earlier at UTSI, which we name COMPUT, for 
an identical test case. The test case run was for a ten stage compressor operating at 87 
percent corrected speed. A brief description of the salient features of the two models is 
given below, followed by the changes made to COMP2SP and the results. 

2.1 COMPUT (SINGLE SPOOl) 

The governing equations are derived (Refs. I and 2) by the application of the mass, 
momentum and energy conservation laws to an elemental control volume in which the 
blade forces, wall shear forces, shaft work done, heat added to the fluid and mass bleed 
flow rate are included. The resulting system of first order partial differential equations can 
be written as follows: 

~(.,t) + (~) + ¢(~,;,,t) = o (i) 

where, 

[ P". "1 r pat: ] 
e,(z,t) = / pAtS / - - / A ( P r :  +,':') ] 

I . p A ( e  -k ~-)J L p A U C p T t  [w.] [,,] 
~(~, z, t) Oa = - P o - 2  - F = g2 

- w ~  - Q 9.s 

The various symbols represent the following: 
p -  density 
A - area 
U - axial velocity 
e - internal energy 
P - static pressure 

C r - specific heat at constant pressure 
"It - stagnation temperature 
W e - compressor bleed flow rate 
F -  
~.v~ 
Q-  

force of compressor blading and casing friction acting on the fluid 
- stage shaft work added to fluid in control volume 
rate of heat addition to control volume 

(2) 

I0 
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In conjunction with the partial differential Eq. (1), we have the equation of state given by, 

e = pRT  (3) 

where T is the static temperature and R the gas constant. [n addition we have the 
equations relating the internal energy and stagnation temperature to other variables as 
follows: 

e = CpT/~/ (4} 

U 2 
CpTt = CI, T + -7~ (5) 

The area distribution A(z) is known for a given compressor system. In the vector if, 
which acts like a forcing function in the differential equation, various terms are modeled 
empirically for a particular compressor. F(z, t) represents the forces of the blades and the 
casing friction acting on the fluid. In practice it is difficult to isolate F(z, t) empirically 

p#A from the experimental data  and hence the total term ( F +  5-i~} which represents the forces 
including the wall pressure area force is modeled from the experimental data. Ws(z,t) is 
the shaft work done on the fluid, which is calculated from the stage characteristics of 
the compressor. The stage characteristics are modeled empirically based on experimental 
measurements of stage total temperature,  flow rate, total pressure and flow angularity at 
the stage entry and exit. 

In Ref. 3, various numerical schemes for integrating these equations and their sta- 
bility characteristics have been analyzed. It has been concluded that  McCormack scheme 
together with the method of characteristics (M.O.C} boundary conditions is more accurate 
and reliable than other schemes tried in predicting the compressor surge. With this scheme 
no numerical instabilities have been encountered. 

In Ref. 3. the following compatibility equations along the three characteristics of the 
system of Eq. (1) have been derived. 

., d~ d-P d z 
C'dt dt + c 2 ~ l - g 3 = O  along ~- = U  (6) 

dU dP dz 
P ~ - d T  * ,-E * ~c~? -~ i~, = 0 along ~ = U ~- c ( t l  

m 

dU dP dz 
~Cdt dt ~c~2 '-~.~ = 0  along ~.  - U -c  {8) 

where, ~ = pA. P -" P A and 

= [ 
gz 

~' ] 
"-"~-'-~ ~"".;lt - I I  -- -r )c, .%, -.- ( - / -  l.}.q:~, 

{.9} 

11 
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where gt, g2 and g3 are given by Eq. (2). For subsonic flows, two boundary conditions are 
imposed at the left boundary. Typically, the total pressure Pt( t )  and total temperature 
Tt ( t )  are prescribed at the inflow boundary. These two boundary conditions and the 
compatibility Eq.(2.8} are solved to obtain all the flow variables at the inflow boundary, 
which are necessary for the interior point numerical scheme. Similarly, one boundary 
condition, say, the prescription of the static pressure P i t )  at the outflow boundary and 
the two compatibility Eqs. (6) and (7) along the out-going characteristics are sufficient to 
compute all the variables at the outflow boundary. Details of this scheme are given in Ref. 
3. 

2.2 COMP2SP (TWO SPOOL) 

The one-dimensional compressor modeling technique has been extended to include 
dual-spool compression systems of the type shown in Fig. 1. and has been applied to a 13- 
stage compression system by Davis in Ref. 4. Variable compressor inlet geometry is used 
on both the fan and high pressure compressor and is scheduled as a function of airflow, 
which is determined from compressor inlet temperature and compressor rotor speed. Stage 
characteristics necessary for model construction were based on experimental data. High 
pressure compressor characteristics were the same as those used in the single spool model. 
Fan characteristics were synthesized from the fan rig data. 

COMP2SP differs mainly from COMPUT, in the boundary treatment. In Ref. 4, 
ignoring the viscous forces and conduction heat transfer along the characteristic curves, 
the compatibility equations were derived to be, 

dz 
d P - p c d U = O f o r  ~ = g - c  (10) 

dz 
d P + p c d U = O f o r  ~ = U + c  (ll} 

Inlet Boundary Solution: The inlet thermodynamic properties for any time can be cal- 
culated by specifying certain boundary conditions (Pt  and Tt} and using the characteristic 
relationships of Eq. (10). The characteristic equation is first solved by approximating the 
total derivatives by differences, 

- = ( u  - c ) a t  ( t 2 a )  

Figure 2 shows the determination of the intersection of the characteristic curve (point zt) 
with the geometry of the previous time step (line AB). The thermodynamic relationships 
at point zl can be determined by linear interpolation of the properties between points 
A and B. Once this point is known, the compatibility Eq. (10} can be approximated by 
differences 

Pz ..... - Pz, = pc (b:z ...... - Uz, ) ( t2b)  

12 
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An iterative technique is employed to solve Eq. (12b) along with the boundary conditions 
that Pt and Tt are prescribed. To obtain a more accurate value of Pz ....... , an outer  iteration 
is applied to Eq. (10), with density and acoustic velocity now being an average between the 
interpolated value in the old time frame and the previous iterated value at the new time 
step. All thermodynamic properties are calculated using these relationships and equation 

of state. 

Exit boundary solution: For subsonic exit conditions, static pressure is specified as 
the exit boundary condition. A characteristic scheme similar to the one used at the inlet 
boundary can be employed. [n addition to using the characteristic relationships of Eq. 
(11), the third characteristic equation along a streamline is also used. 

dz 
dP-c2dp=O for ~ - - - - U  (13) 

A procedure similar to the inlet solution procedure is used with each compatibili ty equation 
solved along its characteristic curve or streamline curve as shown in Figure 3. With the 
specification of static pressure and the two compatibility equations, iterative procedure 
is not needed in this case. It may be noted that the Eqs. (2.14), (13) and ( i t )  are 
approximations of the more general Eqs. (6), (7) and (8), respectively. 

2.3 MODIFICATIONS MADE TO COMP2SP 

The following modifications were made to the COMP2SP code to remove numerical 
oscillations and instabilities. 

t. An arithmetic error in the subroutine FRICFZ,  which computes friction forces in the 
duct volumes, is corrected. 

2. The /tow variables in the FORCES subroutine, which computes the force terms for 
compressor ~olumes. are updated after the predictor step of the finite difference 
scheme, in addition to updating them after the corrector step. Also, friction forces in 
the last duct volume are included in the scheme which was not done in the original 

code. 
3. Accurate boundary conditions are imposed based on the method of characteristics 

at both inflow and outflow boundaries using Eqs. (6}, (7) and (8) as was done in 
C O M P U T  code. 

With change 1, COMP2SP does not exhibit numerical oscillations and yields stable calcu- 
lations as shown in Figs. 4 and 5 for 400 time steps. 

Figures 6 and 7 show the calculations of C( )MP25P with changes 1 and 2. They are also 
~.table and are almost identical to Figs. 4 and 5. 

Figures 8 and g show the calculations of COMP2SP with changes 1.2, and 3. They show 
that the flow reaches stable steady asymptotic state in only 300 time steps. These results 
are slightly more accurate than those of Figs. 4-7. as can be expected by the more accurate 
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boundary conditions. With these changes COMP2SP becomes identical to COMPUT in 
a single spool case. 
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3.0 T U R B I N E  M O D E L I N G  

A general three-dimensional, finite volume code that  solves unsteady Euler equations 
using an explicit MacCormack scheme has been modified at AEDC to s'imulate a turbine 
by the addition of appropriate forcing functions and by the introduction of proper ge- 
ometry and boundary conditions. The forcing functions are calculated based on turbine 
stage characteristics which are input as data. This turbine modeling code is named the 
ATAC code. The testing of this code has been carried out in one-dimensional mode. In 
one-dimensional simulation of a single stage turbine the code has exhibited non-physical 
numerical oscillations. We have analyzed the source of these oscillations by comparing the 
results of the ATAC code with the results of a turbine version of our one-dimensional finite 
difference code (COMPUT), which we name TURBUT. The source of the spurious oscil- 
lations in ATAC code has been identified to be in the calculation of the forcing functions. 
This section describes the details of the calculation procedures for the forcing functions in 
both TURBUT and ATAC codes and the changes made in ATAC to remove the numeri- 
cal oscillations. We also report some results obtained by TURBUT under transient flow 
conditions in a turbine. 

The source terms are computed as functions of Mach number from the known per- 
formance characteristics of the turbine. [n the test case, a single stage turbine is divided 
into eight equal volumes. The computational region is a long constant area duct extending 
from -5.7 to 5.9 ft. The turbine inlet is at 0.0 ft and the outlet is at 0.2 ft. The entire duct 
is divided into 80 control volumes. 

Initially the flow is assumed to be uniform from the inlet of the duct to the inlet face 
of the turbine, and from the exit face of the turbine to the duct outlet. The flow through 
the turbine is computed from the performance characteristics. Starting from these initial 
conditions, the ATAC code is run at AEDC for 1800 time steps, at a CFL number of 0.8. 
The steady state distribution of density, mass flux and Mach Number with axial distance 
are shown in Figs. I0-L2. As can be seen the oscillations in these profiles are localized. 
just inside and near the turbine inlet and outlet, and hence could not be at tr ibuted to any 
problems at the boundaries. Further. the initial inlet Mach Number to the turbine, which 
is cLose to the final steady state value, had to be held fixed during the calculations. When 
the inlet Mach number was allowed to vary with time, the codebecame unstable in a few 
time steps. 

In order to solve this problem, a one-dimensional compressor code, COMPUT de- 
scribed in tile previous sectiou has h,:etl modified to handle the turbine perform~mce char- 
a~teristics. "['he modified code is called T t 'RBUT.  "['his is a finite difference code which 
uses an explicit, predictor-corrector, .MacCormack scheme. ~,'~ hen the code is run for 4,800 
time steps, there is no evidence of oscillations in the flow variables, as can be seen from 
Figs. 13-L5. The cause of the oscillations in ATAC code is traced to the manner in which 
the source terms are handled in that code. 
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3.1 FORCE FUNCTIONS IN THE FINITE DIFFERENCE SCHEME (TURBUT) 

For a specific turbine volume, knowing the inflow conditions and the stage character- 
istics, the outflow conditions can be calculated. The differences between the outflow and 
inflow values of impulse functions give the forces and the shaft work. How the blade forces 
are included in the momentum equation is described below. Suppose the computation is at 
the node i. Using the flow conditions at ( i -  I} station as inflow variables, outflow variables 
at the end of a single turbine volume (station i) can be computed using the turbine stage 
characteristics. The force function at the (i-l} station is given by 

g2(i - 1) = IMPsn - IMPo~,t 

where, 
IMPin = impulse function defined as, A(pu 2 + p) 

calculated at station (i - I) 

IMPo.,t = Impulse function calculated from stage characteristics 

at station i 

Consider the momentum equation, 

(paU) = - ~--z[A(pU2 - P)] + 92 

O ( I M P ) -  } = - {  92 

For point i, the predictor step becomes, 

O-~t (P av) I, = - a--; + _ 

I [IMP(i)-IMP(i-I)-(IMPo,,t-IMP,,,}] 

[MP, n = I M P ( i -  1) and in the steady state, IMPost = IMP(i )  so that the time 
derivative is zero. However. in general IMPost ~ IMP(i)  
For the corrector step we have, 

0 
i ,= 

[MP(i  I- 1) - IMP(i)  
Az  

+v] 
l [ I M P ( t - - I ) I M P ( i ) ( I M P o , , t  IMP,~)] 

Az  
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Once again, I M P , , .  = I M P ( i )  and for the asymptotic steady state condition, I M P o u t  = 

I M P ( i  + 1), so that the time derivative vanishes only in the asymptotic steady state. 
Thus proper switching of the index for the source terms in the predictor and corrector 

steps gives the correct steady state values. 

3.2 FINITE VOLUME SCHEME (ATAC) 

The finite volume scheme approximates the governing equations 

0ff 
- -  + v . f ~ - ~ = 0  
Ot 

in integral form over a control volume V. 

-~ c a v  + v .  f a y  + ~av  = o 

The numerical solution algorithm used to solve the above system of equations is an explicit 
predictor-corrector scheme. 

For predictor, 

For corrector, 

Consider the approximation for the axial momentum equation applied to a one-dimensional 
control volume V= for illustrating the detail. 

Predictor: 

where, 

Corrector: 

[ I M P ( z )  - I M P ( i -  1) +g2(i- l)] ~(aA6  ~) !, . . . .  -X; 

g..,(z - I) = I M P , , ~  - I M P o ~ t  

I M P , , ,  = [:~,lP(z-.- t) 

I M P.,,,t - I M P  Computed based on 

stage characteristics ['or volume i 

] d i I 
t M P ( i  ~- [) - l . ~ t P ( , )  - g~( , ) /  , ~ ( p A u )  i = ~x - ;  

J 
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where, 

g2(i) = IMPs, ,  - I M P o u t  

IMPs, ,  = I M P ( i )  

I M P o u t  = I M P  computed based on stage 

characteristics for volume ( i+l)  

The above description of the force calculation in the corrector step of the finite volume 
scheme is the modified version in the ATAC code. In the earlier version of the corrector, 
the force calculation for V~ was based on flow conditions in Vs as inflow conditions for Vi, 
which was making the scheme to produce spurious numerical oscillations. 

Subsequently, the corrector setp has been modified in such a way that the force on V, is 
based on flow conditions at V~ going into Vz+ t, which makes the scheme stable and remove 
the spurious oscillations. It may be noted that in the modified version, time derivatives 
go to zero in the asymptotic steady state as they should. Modified ATAC code in one- 
dimensional case now produces the same results as the one-dimensional code T U R B U T .  

3.3 STUDIES OF TRANSIENT FLOW CONDITIONS IN A TURBINE 

In order to s tudy the effects of transient flow conditions on a turbine, the code TUR- 
BUT was run with changes in the static pressure at the exit. 

Computat ion was started with steady state flow conditions at the time step 6600, 
established in an earlier run. At that time the static pressure at the outflow plane of the 
exit duct was impulsively dropped from 9.485 psi to 8 psi. By 12,600 time steps, i.e., in an 
additional 6,000 time steps the flow reached a new steady state condition. The time step 
used was 0.000015 sec, with the Courant number 0.8. Figures 16 and 17 show the plots 
of static presure, and mass flow, at various time steps in the duct which has the turbine 
volumes located between 0 and 0.2 units. It was noticed that for several hundred time steps 
most of the transient phenomena was limited to the exit duct, which eventually propagated 
into the inlet duct as well. The Mach number and mass flow in the exit duct underwent 
strong transient perturbations,  and not as much in the inlet duct, before settling clown to 
new steady state conditions compatible with the pressure at the exit plane of the duct. 
The turbine seems to act like a big damper  in not letting the large perturbations of the 
exit duct go upstream into the inlet duct. It was also noted that the head of rarefaction 
wave propagated at a speed dose to the propagation speed of a small disturbance. 

The above experiment was repeated with a sudden increase in exit pressure from 9.485 
psi to I0 psi. As before, computation was started with steady state flow conditions, at 
the time step 6600. At that  time the static pressure at the outflow plane of the exit d'uct 
was impulsively increased to 10 psi and held fixed. The relative magnitude of the pressure 
pulse was 0.054. [n an additional 4.500 time steps the flow had reached a new steady state 
condition. Figure 18 is a plot of the non-dimensional static pressure in the duct  at various 
time steps. The CFL number for this computat ion was 0.8. 

The next set of experiments consisted of introducing a compression wave followed by a 
rarefaction wave. This was accomplished by impulsively increasing the exit pressure from 
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9.485 psi to 10 psi, holding it fixed for tOO time steps, and then dropping it back to 9.485 
psi. Figure 19 is a plot of static pressure vs distance downstream of the turbine exit at 
various time steps. At the time step 6600, the exit pressure was increased to 10 psi and 
held fixed for t00 time steps. At the time step 6700, the exit pressure was dropped back 
to 9.485 psi and held fixed thereafter. This set up a pressure pulse travelling up the duct. 
The amplitude of the pressure pulse was 0.415 psi. Figure 20 is similar to Fig. 19 with 
plots drawn at closer time intervals. The wave speed, obtained from Fig. 20 by calculating 
the time it takes for the peak of the pulse to travel from one location to another, is 828 
fps. This value agrees well with the local (U - c) value (acoustic propagation speed) of 
838 fps that exists at the peak of the wave. 

The leading edge of the pressure pulse hits the exit face of the turbine at the time 
step 7000 (t -- 0.006 sec), and is almost instantaneously transmitted through the turbine. 
It may be noted that the turbine extends a distance of only 0.2 units. The propagation 
of the wave that is transmitted upstream through the turbine is shown in Fig. 21. The 
amplitude of the wave is 0.121 psi. While the amplitude of the transmitted wave is reduced, 
the propagation speed increases gradually from the 828 fps to the local acoustic speed of 
924 fps in the upstream duct. 

Figure 22 is a plot of the static pressure versus distance in the downstream portion 
of the duct for N ~ 7000. where N is the number of time steps. The effect of the multiple 
reflections of the pulse at the turbine exit face and the exit of the duct on the pressure 
distribution can be clearly seen. As can be seen from the N = 7400 values, the flow will 
settle to the correct steady state value. 
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4.0 S T A G E  C H A R A C T E R I S T I C S  

The compressor model equations typically depend on various stage characteristics. These 
stage performance characteristics are obtained experimentally at great expense and can be 
done only for some discrete rotational speeds. Intermediate stage characteristics have to 
be obtained based on some interpolation techniques. Simple polynomial surface fits have 
been found to be unsatisfactory for stage characteristics based on pressure coefficient and 
temperature coefficient versus flow coefficient. [t is necessary to investigate alternate stage 
performance characteristics suitable for high speed compressors in order to interpolate for 
intermediate speeds. 

4.1 CALCULATION OF STAGE CHARACTERISTICS 

In lieu of the parameter  flow coefficient ~b, which is normally used, the calculation 
procedure proposed mainly uses two parameters, namely, total pressure loss coefficient (~) 
and deviation angle (5), represented as functions of two variables-  corrected speed and 
angle of incidence. The  deviation angle and angle of incidence are defined as shown in 
Fig. 23. In addition to their common use, the choice of ~ and 5 is preferable to other  
parameters, since both are relatively insensitive to Mach numbers or corrected speeds when 
corrected speed is low and also not too sensitive to angle of incidence. As a test case the 
eight-stage axial flow compressor of the J85-13 engine has been chosen for this purpose. 

In addition to ~ and 6. the procedure uses the stage temperature rise as calculated 
from the Euler turbine equation, 

Tt2 ~ / -  I M! cos/~l ( t a n ~  + - - -  t an~t ) ]  1 = M~- • (1 t - ~ - -  i'! .--~-:~-.,,  [1 w2 rz w ,  
wz M r  r2 w2 

(t4) 

where, 
M : -  v 

¢ 

c: acoustic speed at station in question e.g. :V[l = 
.A/[ T : rtr_.._~ c~ 

c [  

M~: w- 
e 

w: axial velocity 

N: rpm of engine, Ft -- 2~.N 

"It: total temperature 
T: static temperature 

Pt: total pressure 

P[: total pressure with respect to rotor coordinates 
A -- annulus area 

p: static pressure 

p = density 
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Subscript 0 corresponds to the variables in front of the stator, subscript I corresponds 
to the exit of stator or in front of rotor and subscript 2 is for the exit station of the rotor. 

~ : (f12 blade "1= ~) 

Superscript ~ refers to variables with respect to rotor coordinates. 

The total pressure loss coefficients for stator and rotor are defined as follows. 

For stator, 

For ro tor ,  

P r o  - P t l  

~ - p , o  - P o  

Pi t  - P~2 

Once the total pressure loss coefficients axe available, the pressure rise can be computed 
in the following way. For stator, 

(t + ~-~ M 0 ~ ) ~  - t 

from which P I / P o  can be calculated. 
For rotor, 

( t  - ~ M ~ 2 ) ~  - - ~ ( t  + . ,  ,v,~, 
t~wr 

(L+  T 

from which P2/PL can be calculated. 

(m) 

For the rotor, using the geometrical parameters, gqs. (L5) and (16) are iteratively 
solved along with mass balance equation, 0n wtAt  = a2A2w~,  in order to obtain Tt2, T2, 
and P2. This would determine the rotor exit velocity triangle completely. [n the above 
iteration procedure/ '2 is obtained from, 

~Ar2~ 
T,~ T 2 ( t  + .., :v+~j 

For the stator, using the geometrical parameters, Eq. (iS) and mass balauce equation 
p,  woAo  = p l w t A t  are iterat, ively solved to obtain e,,eL.pn and Tt. This would help define 
the stator exit velocity triangle completely. [n the above iteration procedure Tt is obtained 
froiIl. 

* : - ~ . ~ q )  r,,(l  + ~---  7"1 (1 - -' . . . . .  
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4.2 INTERPOLATION ROUTINE 

The basic input curves were available for four corrected speeds, namely, 80 percent, 
87 percent, 94 percent, and 100 percent. Stage characteristics were determined at all the 
corrected speeds using the above mentioned calculation procedure. In order to check the 
accuracy of the procedure, it was decided to generate the stage characteristics at 87 percent 
corrected speed by using the values at 80 and 94 percent corrected speeds, by means of 
a suitable interpolation routine. However, no noticeable pattern in the basic input curves 
was observed and hence linear interpolation was resorted to, between 80 and 94 percent 
corrected speed curves in order to generate the corresponding curves at 87 percent corrected 
speed. The curves thus obtained have been compared to the actual curves in Figs. 24 - 27. 

4.3 RESULTS 

Figures 24 and 25 show the variation of incidence angle with deviation angle for rotors [ 
and 4, and correspondingly Figs. 26 and 27 show the variation of incidence angle with total 
pressure loss coefficient for both actual and interpolated values. [n order to ascertain the 
effect of linear interpolation, the stage characteristics obtained using the new calculation 
procedure for both actual and interpolated cases, have been fed to an available code of 
a one-dimensional time-dependent compressor model, COMPUT and some representative 
values have been compared as the code reaches steady state. 

Figure 28 shows the variation of inlet mass flow with time as the steady state is 
reached for both actual and interpolated cases and similarly the variation of outflow total 
temperature with time is shown in Fig. 29. As can be seen from Fig. 28 and 29, the inlet 
mass flow differs from the actual value by 0.61 percent and the total temperature rise across 
the compressor by 1.65percent. The last value is close to the largest deviation observed in 
this run. 

In order to compare the method against conventional way of feeding the stage char- 
acteristics to the code (essentially, flow coefficient ¢ vs pressure coefficient tbp and flow 
coefficient ¢ vs temperature rise coefficient CT}, the code was fed with stage characteristics 
of ~ vs Sp and ~ vs ~br and run until the steady state is reached. Figure 30 shows the 
variation of inlet mass flow with time as the steady state is reached, and similarly Fig. 3L 
shows the variation of outflow total temperature with time. As can be seen from the results 
for this method, while the variation in total temperature rise remains the same as before, 
the variation in inlet mass flow is as much as 3.59 percent compared to the actual value. 

Thus it has been noticed that in the worst case where there is no noticeable pattern 
in the input curves and linear interpolation is resorted to, the results are within 2 percent 
of the actual values by the method of stage characteristics outlined in this section. The 
error margin is expected to come down if the input curves are more amenable to a better 
interpolation routine. In any case. the current nlcthod is more suitable for high-speed 
compressors than using ¢'1, and ~'T v~ ,~. 
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5.0 M U L T I - D I M E N S I O N A L  C O M P R E S S O R  M O D E L I N G  

For studying the effects of distortion in the inlet flow and other non-uniformities in 
the flow field such as rotating stall on the compressor operation, one needs to consider 
multi-dimensional models. Kimzey and his associates (Refs. I and 2} generalized the 
one-dimensional model to account for certain three-dimensional features and yet keep the 
partial differential equations one-dimensional in nature. Equations representing the laws 
of conservation of mass, axial momentum and energy are written for each control volume. 
Radial and circumferential momentum fluxes are ignored. Force and shaft work terms 
are determined from the empirical steady-state characteristics modified for the unsteady 
aerodynamic response of the blades based on Goethert-Reddy analysis (Ref. t l ) .  The 
radial work distribution and circumferential crossflow contribution to the swirl velocity are 
also accounted for, by empirical modifications to the stage characteristics. The differential 
equations are similar to those used in parallel compressor models. These equations are 
integrated in time by a Runge-Kutta method. The resulting code, while operational under 
some conditions, suffers from numerical instabilities under other conditions partly due to 
the numerical integration scheme and partly due to the method of impasing the boundary 

conditions. 

Tesch and Steenken (Refs. 7 and 8) and Hosney and Steenken (Ref. 10) at General 
Electric have also considered generalizations of one-dimensional compressor models to in- 
clude multi-dimensional effects for various compression systems. Tesch and Steenken have 
used the parallel-compressor analysis, which simulates the compressor by segmenting it 
circumferentially into several one-dhnensional parallel compressor models. Their analysis 
includes circumferential total pressure and total temperature distortions and circumferen- 
tial redistribution of distorted flows in blade-free volumes. The equations are solved by an 
explicit time-marching technique. Hosney and Steenken have developed a two-dimensional 
compressor model (z-r model} which allows for radial redistribution of the flow. This model 
is developed to account for dynamic interactions between the fan and the compressor in 
a turbofan compression system. For such a multi-spool system, circumferential variation 
of the flow is neglected and conservation equations for mass, axial and radial monmntums 
and energy are written for a control volume in discrete form. Various forcing functions 
are modeled empirically through stage characteristics. Equations are integrated in time 
explicitly. The GE models have been applied to study the stability and frequency response 
of various compression systems. 

Circumferentially disl;orted [low fields need to be studied under different operating 
conditions of comprcssors. Compressor surge and stall are intimately connected with 
distorted flow llehls, il, this section we develop the partial differential eq,ations for a 
two-dimensional compressor model (z-0 rlmde[) in which flow variations in axial and cir- 
cumferential directions are considered but flow variations in the radial direction are aver- 
aged out. "['he equations are analyzed and are transformed into compatibility equations in 
characteristics directions, which provide an accurate means of imposing inflow and outflow 
boundary conditions. 
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5.1 TWO-DIMENSIONAL (z-0) COMPRESSOR MODEL EQUATIONS 

We start with the Euler equations of motion for inviscid flow in conservation form 
in cylindrical polar coordinates. These equations are integrated in the radial direction 
between the hub rl and tip r2. Let u, v and w be the components of velocity in the radial, 
circumferential and axial directions respectively. It has been assumed that  the radial 
velocity is much smaller than the circumferential and axial velocities, i.e., u < <  v , w .  

Defining suitable averages of the flow field variables, the radially averaged equations of 
motion can be written as follows: 

Continuity 

where 

O~L" a (r--~-~L,) + a + ~ ~ ( ~ L , )  + 9, = o ([7) 

L,  = dr = r2 - r l 

f~: rdr l 

f prdr 
= f rdr 

f p r w d r  

rpw = f dr  

f pvdr  

pv = f dr ~],_. Or Or 
gt = r p u -  rpW-~z - pv 

r !  

f fsTdT 
It may be noted that while ~-~ --= .f.-~-- 

Axial Momentum 

= p f ,  in general f-9 ~ f~  

(~8) 
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where 

f prwdr 

f prdr 
p r w  

pr 

f pw'~rdr 
pwwr  - f dr 

f pvwdr 
pvw = f dr 

_ f prdr 
pr - f dr 

Or Or _ (pw2 + - -F.L,  g2 = -  P-~z L , +  p u w r - p v w ~  
rE 

Circumferential Momentum: 

-Fz - f Fzdr 
f d, 

° °[ 1 ~(~.)rLr - (p--w'-~YLr) 4- -~ (p-@-@ + p)Lr + g3 : :  0 

where 
f prudr p-fff 

J" pr dr ~}-~ 

(tg) 

f pv2dr 
pvv - f dr 

j "  pwT;rdr 
pwvr - f dr 

Or _m,;vr~_r_z ] __-~,,L, 
g.j = p u r r -  p r  z -l- p ~-A 

r I 

~ _ f F~dr 

,f dr 
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Energy:  

~ ( ~ ) F L ,  + (pHrw L,) + (pHv L,) + g4 = 0 

w h e r e  

total enthalpy, H = e + 
P 

pe--? f perdr 

p"-f f prdr 

(2o) 

pHrw - f pHrwdr 
f dr 

g 4  --I 

pHv = f pHvdr 

f dr 

Or Or -- 
ot tru - p f t v - ~  - Mtrw-~-~z - QL~ - W~L, 

7! 

~ =  f Odr 
fdr - heat added 

~-~d = f Wsdr _ shaft work 
fd, 

There are 5 equations (continuity, 2 momentum, energy and equation of state) and 15 un- 
knowns (f, ~, w, v, e, p, rpw, po, pw2r. pr, pvw, ptuvr, pl~2 pilaw, pff-v). ~ is a geometrically 
known quantity. Now we make an assumption that f g  = f~. This closure assumption 
gives 9 additional equations. Then we have 5 unknowns and 5 equations. 

Among the Forcing function terms 91,..g4 in the above equations, gl = 0 if there is 
no mass bleed and 92,93,94 have to he determined empirically based on suitable data  
correlations for stage characteristics for a particular compression system. 

The above equations are of the form, 

aA a-; + ~ ÷ ~ + 9 =  o (~l) 

where, 

f i  "= f Lrput g2 
t L,pv fi = Y" 

26 



AEDC-TR-85-5 

rpw L,  ) i' ~-~ Lr ) 

. 6 =  ( p---fv'-~--~ + -~ ) L~ A :  | pT-~ L,  
pwvr  Lr I (-f~-~ + ~) Lr 

These equations are hyperbolic which means that  if we define the Jacobian matrices, 

0.6 : aA 
M~- O~' ~ -  

The matrix P = k t M !  : -k2M.z ,  where kz and k2 are arbitrary parameters such that 
k[ + k~ = l. has real eigenvalues and a complete set of eigenvectors. The eigenvalues are 

q , q , q + c a n d q - c  

where q = k i v + k 2 w ,  and c is the speed of sound. For axial compressor flows where the flow 
is primarily in the axial direction, the eigenvalues of the matrix Mt  determine the boundary 
condition requirements and procedures. Matrix A has eigenvalues: w, w, w + c and w -- e. 
For subsonic inflows this would indicate that we must prescribe three boundary conditions 
(equal to the number of positive eigenvalues) at the inflow boundary. We can prescribe the 
total pressure, total temperature and circumferential velocity or flow angle at the inlet. At 
the outflow boundary, if the flow is subsonic, there is one negative eigenvalue and we need 
to prescribe one boundary condition. This is typically the static pressure at the outflow. 

Equation (21) can be integrated by a numerical scheme such as the MacCormack 
scheme as was done in the one-dimensional model. The boundary conditions should be 
imposed at the boundaries by using the characteristic compatibility equations, which can 
be derived by suitable transformation of Eqs. (21). These are given by 

do l d# v. (Op l ~ #v Or + ~, _ !~ = O ' 
dt c 2 dt + r"  O0 e 2 ) r 2 O0 

aZ (23) along -~- = w for a fixed 0 

dv I Ov 1 O0 c 2 Or 
--at '- o 0  " 03 : o .  

d" 
alon~ -- = w for a fixed 0 (2-1) 

dt 

dw t d~ v o w  c O~" v O~ . I . 
- -  + - - - - -  + ". + g2 -- _--[14--0. 
dt ~c dt r O0 r O0 ~6er O0 pc 

dz 
along ~ = w ,- e for a fixed 0 (25) 
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dw ! d~ v ~ w  c a r  v dp 1 

dt pc dt + r 60 r 60 p'cr dO + g2 _--g4 = O, 9c 

dz  
along ~-~ : w - c for a fixed 0 (26) 

Details of the derivation of the eigenvalues of Mt and the characteristic compatibility equa- 
tions are outlined in Appendix A. Discretization of the equations described in this section 
and the corresponding Computer  Code can be developed similar to the one-dimensional 
compressor model code COMPUT.  
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ft.0 C O N C L U S I O N S  

A. The numerical oscillations encountered in a one-dimensional compressor model 
(COMP2SP) have been traced to some parts of the algorithm. With appropriate 
changes, the code is now numerically stable and also it has been made more accurate 
by imposing the boundary conditions by the method of characteristics. 

B. Numerical oscillations encountered in the turbine model (ATAC) are due to the man- 
ner in which the source functions are incorporated in the finite volume algorithm. 
With appropriate changes in the algorithm spurious oscillations have been eliminated 

in this model. 

C. Stage characteristics based on the total pressure loss coefficient, ~ and "the deviation 
angle, 6 as functions of the angle of incidence, i and corrected speed have been found 
to be less sensitive to errors in interpolation for intermediate speeds than pressure 
coefficient, ~p and temperature coefficient, V)t as functions of the flow coefficient &. 

D. Radially averaged, unsteady two-dimensional compressor model(z-0 model) equations 
suitable for circumferentially distorted flows have been derived. Characteristics and 
compatibility equations are derived for imposing the inflow and outflow boundary 

conditions. 

29 



AEDC-TR-85-5 

I. 

. 

. 

4. 

REFERENCES 

Kimzey, W. F. "An Analysis of the Influence of Some External Disturbances of the 
Aerodynamic Stability of Turbine Engine Axial Flow Fans and Compressors." AEDC- 
TR-77-80, August 1977. 

Chamblee, C. E., Davis, M. W. Jr., and Kimzey, W. F. "A Multistage Axial Flow Com- 
pressor Mathematical Modeling Technique with Application to Two Current Turbofan 
Compression Systems." AIAA-80-0054 presented at AIAA 18th Aerospace Sciences 
Meeting, Pasadena, CA, Jan 14-16, 1980. 

Reddy, K. C. and Tsui, Yeng-Yung ~Numericai Stability Analysis of a Compressor 
Model." final report of contract F40600-80-C-0006, July 1982. 

Davis, M. W. Jr. "~A Stage By Stage Compressor Modeling Technique for Single and 
Dual Spool Compression System." a thesis presented for Master of Science degree to 
The University of Tennessee, August 1981. 

5. "Aerodynamic Design of Axial Flow Compressors." NASA SP 36, 1965. 

6. Kerrebrock. T. L. Aircraft Engines and Gas Turbines. MIT Press, 1977. 

7. Tesch, W. A. and Steenken, W. (5. "Blade Row Dynamic Digital Compressor Program, 
Vol. I J85 Clean Inlet Flow and Parallel Compressor Models." NASA CR-134978. 
March 1976. 

. 

. 

I0. 

II. 

Tesch, W. A. and Steenken, W. G. ~Blade Row Dynamic Digital Compressor Pro- 
gram, Voi. II .I85 Circumferential Distortion Redistribution Model. Effect of Stator 
Characteristics and Stage Characteristics Sensitivity Study." NASA CR-134953, July 
1978. 

Kimzey, W. F. -'An Analysis of the Influence of Some External Disturbances on the 
Aerodynamic Stability of Turbine Engine Axial Flow Fans and Compressors." A dis- 
sertation presented for the degree of Doctor of Philosophy to University of Tennessee. 
June 1977. 

Hosney, W. M., and Steenken, W. G. "TF34 Engine Compression System Computer  
Study." NASA CR-159889, June 1979. 

Goethert, B. I[., and Reddy, K. C. ~Unsteady Aerodynamics of Rotor Blades of a Com- 
pressor Under Distorted Flow Conditions." Paper presenr, ed at AGARD Fluid Dynam- 
ics Panel Specialist Meeting on Aerodynamic Interference, Silver Springs, Maryland. 
September 28-30. 1970. 

3 0  



A
E

D
C

-T
R

-8
5

-5
 

P
 

~J E
~

 

O
=

 

O
=

 
k

~
 

U
~

 

I 

! 

.q 

0 0 
C

J 

rM
 

fJ 

u 

4J 

r.~ 

In
 

0 ~n 

4
) 

g 0 0 0 -4 

"0
 

C
~

 

0 ~J 

L., 

3] 



AEDC-TR-85-5 

Z-di rec t ion  

C(Zne w) 

Characteristic eurve 

Point Z I 

A 

% 

\ 
% 

% 
% 

\ 
% 
_% 
r 

\ ---A 

t=t 
new 

-B tffi t 
-- old 

Figure 2. Schematic of inlet  characterist ic boundary scheme. 

Z-dlrection 

Characteristic Curve 

Point ZEI ~ / /  

/ 
/ 

#, 

H(Znew) t 
7 / /  

- o / L  
/ / 

/ / 
/ 

/ 
/ 

/ Point 
ZE 2 

= t new 

Streamline Curve 

t = tol d 

Figure 3. Schematic of exit characterist ic boundary scheme. 

32 



A
E

D
C

-T
R

-8
5

-5
 

T
 C
) 

t~
 

~J 

.G
 

4J 

(/3 

0 r~
 

-~-~ 
-~-~ 
-
t
O
 

- 
,,.~, 

-~.~ 

-t.4 

~-,-~,,,,~,,,,,,,, ~ 

-b-~ 
-.~_~ 

....... ~,,, ...... 
,
,
,
,
,
,
,
.
.
~
 

u 

ct~ 
v l--a 

O ~a 

~,) 

e, 

°
~
 

E ~D 

~
D
 

f~ 

O f,d 

b
~
 

°
~
 

33 



A
E

D
C

-T
R

-8
5

-5
 

~ 
"o

 

"0
 

I:u 

~ 
E

 

0
 

~
0

 

T
 0 

L~ 

- 
(:~ 

=t..~ 
= 

(0
 

.o 

- 
C

q 

".L
:~

 

-G
O

 

-L
4 

"
L

q
 

-L
~

 
" 

",'t 

Q
 

O
) 

.~- 
~ 

~ 
-.--G

 
"~

 
~ 

,~
 ......... ~

 ........ ~
 ......... 

(I, Io) 
~II'1N

,I,V1,r,,IdN
3J, "IY,1,0.T. /",O

"l.4,l, nO
 

or} 
C

~
 

0 C
J 

v e~
 

e'., 

E 

Q
j 

-~
 

L 

4
-) 

0 

0 
c:: 

0 'L. 

3
4

 



A
E

D
C

-T
R

-85-5 

cN
 

"0 

i-i 

oO
 

~O 

,i,J 
-i-I 

r~
 

c~
 

"0
 

#J 
#J 
en

 

4J 

0 
","¢ 

~",e 0 

o0.,,,1" 

....... 
....... 

E;I 
L

~ 
E

~ 

83 
"~¢ 

O
r) 

Q
 

~.~ 
or) 

t',Z 

(o
a

s/q
q

) 
M

O
q~ SSV

N
 &

a'L
N

I 

0 

L
~ 

t.~ 
Q

 
-r-O

~ 

-Q
 

• ,'T
"~--I 

m .4 

-E
h

 
-8

0
 

-.L4 
-I 

.t.~
 

-' ',,t 

"I 

L~C
.~ 

U
 

r J3
 

v i,.-I 
[.~ 

ca3 
¢

4
 

O
 v ¢

q
 

b
O

 

..C
 

L
. 

0 e~ 
m

,,-'= 

~5 

°.--i 
tm

 

35 



A
E

D
C

-T
R

-8 5-5 

I o 

~.k~.J--I. ~.~.~..4-~-t 
"t"- ~. f-~ 

t~
 

TO
,; 

-Q
 

-(D
 

-Q
 

-t.~
 

"o
 

o., 

.,I.I, 
.I.I 

I.i 
~

l 
_' 

O
'H

 

"2-N
 

%
'~- ...... a'"' 

L
~

' 
~-'~ 

| I I L. 
i 

L-~ 
L.A-L.& 

IX
) 

t'- 
(.O

 
b") 

O
 

(l) 
G

) 
G

) -Q
 

"(1
) 

"'r-~
 

01o)-~lII.n.:r.V
}I~l,:II4~{.r. 'I',f~0,1, M

0"L-IJ.,.q.0 

l:., 
c,l 
I:., 

O
 

r,.) 

,:,,I 

l:: 

"Jl 

r.J 

°~
 

.__. 
r, rj 

r~
 

v 
::I. 
(n

 

I_. 

l,w
 

4,) 

o 

,2 -i 

O
 1"4 

:::I 
b

ll 

36 



A
E

D
C

-T
R

-85-5 

T
 0 

al 
ol 

ol 
ol 

0
 

0
 

0
 

r
-
~
o
 

O
O
O
'
I
 

I 
I 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

,-4
 

d
 

0
 
o
 

0
 

0
 

0
 

0
 o

 

v
 )-; 

0
 

0
 

0
 

C
3 

o
 

0
 

d
 

8
 

0
 

0
 

0
 

O
 

C
j 

o
~
 

"0
 

r-. 

....4
 

o
 

37 



A
E

D
C

-T
R

-85-5 

7
 o
 

~
4 

I 
0 

0 
0 

o
 

o
~
 

c
o
 

o
~
 

0
0
 

co
 

0
'~

 
U

 
~ 

0 
A

 
0 c; 

0.. 

0 "0
 

tlS 

e
. 

"J 
~ 

Z
 

m
 

,,J 

e
~

 

O
 L
 

"I 

=
 

! 
o 

o
 

o
 

o
 

~ 
o 

o 

• 
(ll o) 

.~Ifl,I/v'~I~IcIH
~IJ, T

¢,£0~ 
flO

~I3flO
 

38 



A
E

D
C

-T
R

-85-5 

I 
~£6 "0 

I 
<;6g "0 

1 
g(;g" 0 

I 
Z
~
8
"
O
 

I 
(~8/"0 

0I-1~ 

I 
g*//. "0 

I 
~
I
L
'
O
 

-
0

 u
~

 
O

 
_o,. 

..¢
 

rrl 
r'-. 

m
 

• 
C

'N
 

~
O

 

ew
) 

00 
r~

 
r,,.. 

m
 

• 

o I 

cr~ 
-,1" 

D 
O

'~ 

O
 

N
 

_.--:. ! 

O
 

¢",4 
m

 
• 

.,,1" 
I 

u
'l 

I 

,..:. 
r.n 

¢J 

U
'J 

o0 
,<, 

(n
 

o ¢1 

r/) 
O

 

¢: 
¢J 

"O
 

O
 

o 
°~

1 

..o
 

°~
 

f,. 

r./} 
°~

 
"O

 
~

J 

¢l 
..,n 

i 

"O
 

0~ 

L
. 

bid 
°~

 

39 



A
E

D
C

-T
R

-8
5

-5
 

it3
 

r~
 

c; 
O

0 

II ,g 

E
 

I: 
0 

.,,.a 

,-I 

U
 

0 E~ 

p, 

,,,0 

u 

I 
I 

! 

II 
"() 

IL
l 

"(] 
h')l 

"{| 
I 

! 
I 

/q
l 

"(I 
'/ql 

"1) 
<:C

ll 
°f) 

IlC
ll 

",) 

II~
(IIIH

 

I~
 
l'(l 

0 -t 

I "I 

l 
, 

.-4 

c~
 

f~ I 

a
~

 
-I 

"T
 

r| i 

0 q
'l ! I ! 

,r, I 

E
 

°~
 

0 0 

E
 

0 r=. 

0 
o

~
 

L 

4-J 

.=
~

 

4() 



A
E

D
C

-T
R

-8
5

-5
 

t.¢%
 

m
m

N 

c; 
~O

 

g 

~q 0 

i-4 

U
 

c~ 

"0
 

t 

~
':o

 
~,,f'0 

9~z',0 
9IZ

"O
 

T
O

Z
iO

 

• o~ 
TO

VN
 

m
sf'0 

~,L~"O 

~D
 

O
 

~A 

t~
 

• 
C

D
 

O
~ 

r~
 

t~
 

,-4 

O
 I 

O
~ 

! 

O
 

t",l 
r-I 

I 

O
 I 

A
 0
 

..-m 

0
 

¢,., 
0
 

0
 e
~
 

41 



A
E

D
C

-T
R

-8
5

-5
 

r,,. 

c
o

 

II 

Et 
.H

 
4.1 

0 

i-4 

0 
r,4 

0 

"13 
0 E C

 
.H

 

M
 

-i 
4-1 

4.1 

k 

0 

0 

0'~
 

0 

,--I 

0 
0 

0 

N
 

0 

0Itlt 

d 
p,,,, 

d 
d 

u
~

 

,4 • 
[. 

-g
 

O
 

O
 

u'~ 
.~

 
u 

O
 

"~
 

I 
..O

 
r~ 

"~ 

I 
..~

 

c4 

0
~

 

u
'l 

-.,1" 
I 

u
'l 

O
 

I 

c; 

4
2

 



A
E

D
C

-T
R

-85-5 

~D
 

0O
 

~.J 

0 ~J 

,..4 

r~ 
U

 

,...4 

.i-I 

O
wl 

~D
 

C
J 

¢'4 
,,.D

 
.,-4 

O
 

U
"I 

u~ 

b~ 

U
~ 

U
~ 

O
 ! 

,,.O
 

T
 u~ I u~ I u~ 

.,.1- 
! 

u~ I 

>¢ 

".R 

O
 

°~1 

r~
 

..Q
 

r... 

~>~ 
°.~ 
"O

 

¢1 

09 

"O
 

43 



A
E

O
C

-T
R

-85-5 ~D
 

J o 
,.~ 

.I-I 
,i.i 

o 
r-I 

~J 

~J 

~J 
I.,I 

! 

T 

~
"
=
;
'
"
 

~
 

~
'
"
~
 

N
 

m
 

:~ 
:~

 
.
.
.
.
.
.
.
.
 
~
 
.
.
.
.
.
.
.
.
.
.
 

4
 

kl .
.
.
.
 

~ 
~

1 
~ 

~ 
t%

1 
~ 

~ 
v-0 

~ 
F~ 

I 

L c 

°~
 

°~
 

44 



A
E

D
C

-T
R

-8
5

-5
 

II~l..II,,,,.~..ll,~,~ 
i 

¢ 

f~i 
(M

 
. 

O
3 

('~J 
('~ 

C
O

 

II 
U 

11 
II 

2
: 

Z 
Z 

~
E

 

r,e~+ 

4 
+ 

E 

' 
I ,. 

~ 

'4
-,I 

I 

I 

U
 

• M
 

0 
0 

0 
0 

.,-., 
S

S
S

S
 

1
.1

1
1

4
4

 
I 

I 
i 

Ill 
I 

I 
I 

I 
| 

li 
I 

$ 
I 

I 
I-I 

I 
I 

Ii 

~
.~

 
O

tP~ 

-t..~ 

-t~ 
-1N

I 

. ,.'.:~ 

Z
~

 

-I 

. 
| 

m
 

N
d

 

¢
t 

I,., 

I-I 

° ~,,,I 

0 

IX
: 

=
d

 
0 

.,,.4 

0 

o
O

 

I...0 

0
"~

 

"-,2 

~d 

o,i4 

45 



A
E

D
C

-T
R

-8
5

-5
 

Z
 

Z
 

Z
 

Z
 

Lr~ 
f~

 

I 
,,I 

-N
 

" 
I 

"Q
 

"I 

~
J~

Jillll|l~
ILil|lil~

|llliJill~
llllllllllJll~

.~
l. 

r-. 
L'-- 

{D
 

~D
 

Lr) 
Lr) 

Lr) 
~ 

.~" 
(¥) 

SB
~I~ 

IV
.T

.S 

O
 

O
 

~
a

O
 

~L~ 

c
~

 

...) 

c..'~
 

"s 
,~

 

~J 

46 



A
E

D
C

-T
R

-8
 

5
-5

 

121 

= 

O
 

O
 

O
 

,O
 

n 
| 

z 
z 0 0 0 1 

0 

It 
I 

Z 
Z 

~ 
+ 

0 
0 

~ 
d 

P 

d 

,-..... 

) i 
[] 

.
.

.
.

.
.

.
.

 
~ 

v,- ~. 
~C

:~ 
~

. 

I 

0 

! 
I 

I 
I 

l 
I 

f 

o 

] 

O
,.4

 
o.# 
O

 

V
 

~D
 

! 

S
~]~I d 

~LV~LS 

..:,1" 

C
, 

2} 

= 
II 

• ~ 
.30 

,--,_
. 

~
0

0
 

,O
"~

 

O
 

;>
 

°.,,¢ 

f,., 

"~
 

:3
. 

b.£ 

4"/ 



A
E

D
C

-T
R

-85-5 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

It 
II 

II 
II 

II 

'~
 

Z 
Z 

Z 
Z 

E
]O

4
 

+
~

¢
 

~J 
0.1 

0 
0 

0 
0 

0 

I 

:) 

I 
i 

I 
I 

! 
I 

I 
I 

I- 
I 

•
 

o
 

o
 

o
 

o
 

o
 

o
 

o
 

o 
o 

o 
o'~ 

0
0
 

,,o 
-.I" 

cq 

o t~
 

o 
:::3 

O
 

-1 

q 
-o

 

E
 

L 

g 
= O

 

¢1,,1 
e', 

D-, 
.,,-q 

,-',1 

O
 O
 

t',, 

E
 

o o ,d 

48 



A
E

D
C

-T
R

-8
5

-5
 

0 
0 

0 
0 

0 

It 
II 

u 
N 

U 

Z
; 

Z 
Z 

~ 
Z 

0
0
<
~
+
 

~
 

.-I 
0 

~ 
0 

0 
0 

0 
0 

0 
0 

0 

I 
I 

I 
I 

I 
I 

w 

C 

q 
~ 0 

"o
 

E
 

o 
C

 

-.-t 
0 

, 
I,t 

0 
r 

i 
o d 

<
t 

0 0 ~0 

q~ 

~2 
L 

49 



A
E

D
C

-T
R

-85-5 

Q
 

IJ 
II 

U 
II 

I! 

Z 
Z 

Z 
Z 

Z 

E
l0

4
 

+ 
X

 

u oJ 
u~

 
u

~
 

0 
0 

0 
0 

0 

0 
0 

0 
0 

0 

I I 

" 
I 

-4 4 

L
~ 

Q
 

LF) 
~ 

I/3 
~ 

U
-) 

Q
 

U
O

 
Q

 
L

F
~

 

("~
sd) 

S3'&
~ 

£V
,I,S 

• .,,.,.i 

,,.j 

m
 .-j 

E 

s., 

50 



A
E

D
C

-T
R

-8
5

-5
 

II 
II 

I! 
U 

II 

E
]~

)~
 

+
x

 

0 
0 

0 
0 

0 

i 

l; 4 4 .w
-,~ 

~..4~&
~.4. 

a 
.', 

• 
I 

L.-~ 
~ 

e 
I 

-I..6 
t 

I 
I 

! 
I 

,I 
i 

;' 
J 

i 
6 

o 
I 

I 
I 

I 
J 

i 
0 

a 
I 

e, 
| 

j 
I 

e 
a 

I 
e~ 

t 
~...d:l~ 

• -.., 
~ 

0"; 
CO

 
D-- 

(.ID 
LI'3 

~ 
CO

 
O

J e,,~ 

(T
s

d
) 

S
:4~],:I 

.I,V
&

S
 

X 

"0
 

o~ o o L. 

.J= 

...=~ 
.,,..) 

-_
.-~

 

2
,=

 
~

.J
:: 

b.O
 

.,...i 

51 



AEDC-TR-85-5 

fl r 

-- S t a t i o n  I 
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fi I: 2 
Figure 4.1 

V: ABSOLUTE VELOCITY 
V*: RELATIVE UELOCITY 
w: AXIAL VELOCITY 
~: ROTOR ANGULAR VELOCITY 
r :  RADIUS AT PITCH LINE 
q r :  TANGENTIAL VELOCITY 
6 : ABSOLUTE FLOW ~NGLE 
B*: RELATIVE FLOW ANGLE 

D e f i n i t i o n  o f  a n g l e  o f  i n c i d e n c e  
and d e v i a t i o n  a n g l e  

Inlet 
Velocity ~ xx 

i ~  ' i: ANGLE OF INCIDENCE 
6 : DEVIATION ANGLE 

Figure 23. Definition of angle of incidence and deviation angle. 
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A P P E N D I X  A 

C H A R A C T E R I S T I C S  A N D  C O M P A T I B I L I T Y  E Q U A T I O N S  
Equation (21) can be rewritten as, 

Ou aft o f t  off o f  2 off o f  2 Or 
. . . . . .  ~ - - . - - + - - . - - + o = o  
a~ ot  + Off Oz Off O0 Or O0 

Substituting for a_~u o_& ~ and ~ we obtain, 

O# O# Ow v O# # O. ~ ao Or 
,, -~ ' (w~+#-~-~z)+(r-~+rOO,-r'-'~'O-~+gt = 0  

(wO# Ow ( 20# Ow O# vw O# #vOw 
' ~  o, o, ~ )  r r oo 

# w  O r ,  v w  O r  +--;-~) - # 7 ~  +92 =o 

O~ Ow Ov v 2 O# (,o# _ # ~ ) _  (w,,~ + #v-d-; -#,0~) + ( - ~  + - - - -  

- ~ - - ; T  ' r 2 ~ 0 #  + g3 = O 

2#v Ov I. O# 
_ - ¢ -  _ _ _  ) 

r O0 ' r a0 

and, 

V O# Ow Ov t O #  - V 2 a# ~___~# V 2 

Ow Ov ~tw a# .  r v v  2 o# #vw Ow ~t# # v2  

"i l d z ;  t 2r O0 I r aO ' (~ / - - i ) r  r 

av -t o o#.  t -/ v# 
o o  ~, - t r OO" t 3 _ t r 2 

f i v  Or 
2 V'~)~'a~, +e4  = 0  

r 2 

The above equations can be written as, 

LOft Off dti dr  
at " :vt ~ + ,.v2 ~ -- .'% ~j~ -- ,.! = o 

o r ,  

where, 

Off L -  1 O~ ~0 Ot "~ '-~z -" L - i N "  L '  ' Or 
. . . .  ' - " \  "" e)O 

L 0 0 0 

(-,)u w # 0 0 
f_, . . . .  c)~ ~' 0 # 0 

v'~ ,aw #v ' - 

f, 'g--O 
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/ i  o o o) 
_ ! 0 0 

L - I  # 
1 0 - - :  0 

. ~ -(-y-t)., -(~-1)v (~-t) 

Let, / l~fl  = L -  1 N l  = L -  l 

,= o o o ) 
L 0 0 

----- I 0 -~ o 

~ia..~v~ -C '~-  1)., -(,~ - t),, ( ,~- t) 

w 2 2pw 0 t 

wv pv ~w 0 

• ~ - t  " ~ - t  

(i :Ql= w 0 
0 w 

"~p 0 w 

For  t h e / ~ / !  m a t r i x ,  t he  cha rac t e r i s t i c  e q u a t i o n  is given by i A~fi - AI I= 0 

I w - A  .# 0 0 
I 

0 0 w - A  0 
0 --/p 0 w - A 

Solving the  above  we o b t a i n  the  roo ts  as. 

A I = w .  A2 = w ,  A3 = w - c ,  A4 = w - c  

=0 

where "/p/fi = c 2 

The matrix T formed by tile above eigen vectors is, 

i 0 t t 
T "-- 0 "-' --'-" 

-I 0 0 
0 0 c" c" 
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T - I =  

(!o 
0 -I O" 

o 
2~_ 0 l - 2c 

Also, 

Now, 

Similar ly,  

~ = L - t g =  

We h&ve. 

(ioo o) .t ~w .~ " ' - I  " s t "  = w 0 0 
0 w + c  0 ' 

0 0 w - c  

diagona l izes  

/~I'z = L - I N 2  = L - l O f 2  
Off 

;~ o o 
:~'~= o o ~ ~ 

o o  ~ '~ 

= : .3 = Or r 2 POP 

! 0 0 0 

-,~ t 0 0 
7 
-v 0 I 0 
7 

g [  = gt  

w t 
~2 = - -_gt  ' -  - 9 2  

P P 

- u 93 
~3 . . . . .  Yl - -  "-- 

p p 

g4 ("  ~,- t) ('7, L) { - V Z g t  - _ wg2 + v g ~ - g 4  

01i c)fi _ ~ d r  

g2 
g3 
g4 
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multiplying by T -  ~, 

T_~O~ O~ T_tl~l O(z T_ t - Or ~g ~- + r - IM,~  + ~ - +  ~ + 7"- =0 

cgt c ~" O t  

I O ~  - o , ,  
T -  - ~  = .Z aw at 

2c Ot + t_L O_~ _ _  2c 2 0 t  

ST -1-27- 

Now, T-tlVI~T = D or T-t:Q't  = DT -~ 

N o w  

D T -  t O~ 
Oz 

, , ,~_~ ) O,r, 

-to-~, 

~(" +~1 °'~r, + ~(,,, +,1~ 
,o, + # ( " - ~ ) ~ ,  

~,o~_ , ,o~  

T _ ~  , (420  ~ --~ o~ t aO ~ r  O0 
- ~  = .~.. o,, . Z a~ ~ 

2or  3--0" ' 2 r  0--0 "l- 2c~r  O0 
_T..p_~ a w .p_.a~ v O# 
2 o r  O--ff - -  2 r  tgO ' 

p_yar) 

- O r  c ~" Or r - 'M,~ = %~ 

• 0 

01-9 ) 
T-t# = -~h 

. . ~ -  • _.q~ - 
2,: g 2  - r  2e-  g4 

substituting the above, the compatibility equations are derived as. 

OlJ I O# i9# w O~ . u(O~ 1 0~) 
at c '- at + '" a z c 2 a g ~- -; ~~ c'-' - ~  

r'-' O0 ' #t - c" : 0 

#v ar #4 
C" 

~" -N ) 
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o r  

o r  

o r  

o r  

d# ! dp v (O~ 10/~) #v Or 

dt c 2 dt + - r -~  ¢2 bO r 2 aO 
#4 

m - -  = 0 9  +#t c2 

dZ 
along ~ = w for a fixed O. 

( av 1_a# 1 ~: ar Ov Ov 1 v ~ + + # : 3 : 0  
Ot W ~-~ r p O0 ) "~r 2 aO 

dv t / Ov l Op) c 2 Or 
dt , [ v ~ ~ ~ / ~r2 ao + #3 = o. 

dZ 
along ~ = w for a fixed 0. 

0 ~ c ( ~ d _ ( w ÷ c )  A ) w  1 0 # v Ow - 

v O# ~ I . 
" - - - - +  #2'- =0 ' 2c2r iftO ~2C294 

dw I dp v o w  c o y  v OlJ I . 
d-~ ÷ ~  + -  + -  + - - - - + # 2  ~ - - g 4 = 0 ,  r ~  r ~  #era0 #c 

dZ 
along d-T = w + e f ° r a f i x e d O "  

- #  O ~ - ( w -  w -  + ( w - c )  # + m m 

v O# # .  I 
2c2r O0 2 c g  2 -- 2 - ~ #  4 : 0 

dw I d# ~, 07v c o y  v d13 I . 
+ # z -  _--g4=O. 

dt #c dt r O0 r dO #or dO pc 

dz 
along ~ = o0, - c for a fixed O. 

1 0 v  +~) 

# Ov 

2r O0 

(A.I) 

(A.2) 

(A.3) 

CA..l) 
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A 

P 

e 

P 

Pt 

Cp 

cv 

T 

rt 

WB 

t 

F 

w, 

R 

Z, y, z 

c 

C N  

f 

I M P  

N O M E N C L A T U R E  

A r e a  

density 

internal energy 

static pressure, matrix as defined in Chapter 5 

total pressure 

specific heat at constant pressure 

specific heat at constant volume 

ratio of specific heats 

static temperature,  matrix as defined in Appendix A 

total temperature 

compressor bleed flow rate 

time 

force of compressor blading and casing friction acting on fluid 

stage shaft work added to fluid in control volume 

gas constant 

coordinates in the cartesian coordinate 

system 

speed of sound 

courant number 

as defined in Eq. (2) 

as defined in Eq. (2) 

as defined in Eq. (2), and Eq. (21) 

impulse function 
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N 

i 

6 

V 

W 

r 

J~T 

TI 

r2  

r.O,z 

Mr, M2 

number of time steps, rpm of engine 

flow coefficient 

pressure coefficient 

temperature coefficient 

angle of incidence 

deviation angle 

absolute velocity, volume, total velocity 

velocity 

radius at pitchline 

absolute flow angle 

relative flow angle 

total pressure loss coefficient 

axial Mach number 

rotor Mach number at pitch radius 

hub radius 

tip radius 

cylindrical polar coordinates 

components of velocity in the radial, circumferential, and axial directions, respectively 

as defined in Eq. (21) 

Jacobian matrices as defined in Eq. (22), matrices as defined in Appendix A 
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n 

L 

M 

H 

Nl, N2, N3 

~L,2,3,4 

q 

Q 

kl, ks 

SUBSCRIPTS 

'r' 

~S ~ 

t01 

L 2 ' 

t Z ' 

SUPERSCRIPTS 

t 

q- 

rotor angular velocity 

averaged values in radial direction 

length, matrix as defined in Appendix A 

Mach number 

total enthalpy 

matrices as defined in Appendix A 

roots of the characteristic equation 

as defined in Section 5 

rate of heat addition 

arbitrary constants 

refers to rotor, radial direction 

refers to stator 

in front of the stator 

after the stator and in front of the rotor 

after the rotor 

refers to circumferential direction 

refers to axial direction 

variables with respect to rotor coordinates 

refers to values at the forward node 

values at the previous node 

as defined in Appendix A 
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